Rainbow Connection Number of Graph Power and Graph Products
نویسندگان
چکیده
Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (Note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely cartesian product, lexicographic product and strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) ≤ 2r(G) + c, where r(G) denotes the radius of G and c ∈ {0, 1, 2}. In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius [1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight upto additive constants. The proofs are constructive and hence yield polynomial time (2 + 2 r(G) )-factor approximation algorithms.
منابع مشابه
Rainbow Connection Number of Graph Power and Graph Products
The minimum number of colors required to color the edges of a graph so that any two distinct vertices are connected by at least one path in which no two edges are colored the same is called its rainbow connection number. This graph parameter was introduced by Chartrand et al. in 2008. The problem has garnered considerable interest and several variants of the initial version have since been intr...
متن کاملOn the rainbow connection of Cartesian products and their subgraphs
Rainbow connection number of Cartesian products and their subgraphs are considered. Previously known bounds are compared and non-existence of such bounds for subgraphs of products are discussed. It is shown that the rainbow connection number of an isometric subgraph of a hypercube is bounded above by the rainbow connection number of the hypercube. Isometric subgraphs of hypercubes with the rain...
متن کاملS N 2 23 2 - 20 94 , n o . 1 14 9 , M ay 1 7 , 2 01 1
A path in an edge colored graph G is called a rainbow path if all its edges have pairwise different colors. Then G is rainbow connected if there exists a rainbow path between every pair of vertices of G and the least number of colors needed to obtain a rainbow connected graph is the rainbow connection number. If we demand that there must exist a shortest rainbow path between every pair of verti...
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملRainbow connection in oriented graphs
An edge-coloured graph G is said to be rainbow-connected if any two vertices are connected by a path whose edges have different colours. The rainbow connection number of a graph is the minimum number of colours needed to make the graph rainbow-connected. This graph parameter was introduced by G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang in 2008. Since, the topic drew much attention, and v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Graphs and Combinatorics
دوره 30 شماره
صفحات -
تاریخ انتشار 2014